12-2 WS - Key

Wednesday, February 5, 2025

7:46 AM

Find the values of the six trigonometric functions of an angle θ in standard position whose terminal side passes through point P.

$\sin(\theta) =$	7 10	$\csc(\theta) =$	<u>N</u> +
$cos(\theta) =$	MIN	$sec(\theta) =$	MΜ
$tan(\theta) =$	7/M	cot(θ) =	M 7

Find the values of the six trigonometric functions of an angle θ in standard position whose terminal side passes through point P.

2)
$$P(3,3)$$
 $x + y^{2} = C^{2}$
 $3 + 3^{2} = C^{2}$
 $9 + 9 = C^{2}$
 $92 = C^{2}$
 3
 3

$\sin(\theta) =$	$\frac{3}{\sqrt{3}} = \frac{\sqrt{5}}{1}$	csc(θ) =	1 = JZ
$cos(\theta) =$	- 150 - 150	sec(θ) =	12-12
$tan(\theta) =$	=	cot(θ) =	<u>الم</u>

3) Given an angle θ in standard position whose terminal side passes through P (12,5), find:

$$x^{2} + y^{2} = c^{2}$$

$$5^{2} + 12^{2} = c^{2}$$

$$25 + 144 = c^{2}$$

$$169 = c^{2}$$

$$13 = 6$$

$$\cot(\theta) = \frac{5}{12}$$
$$\sec(\theta) = \frac{13}{5}$$

4) Given an angle θ in standard position whose terminal side passes through P(1,4), find:

$$\cos(\theta) = \frac{1}{\sqrt{17}}$$

$$\csc(\theta) = \frac{\sqrt{17}}{4}$$

Use the cofunction identities to find the measure of the acute angle ϕ .

5.
$$\sin \phi = \cos 12^\circ$$

6.
$$\cos \phi = \sin 65^\circ$$

6.
$$\cos \phi = \sin 65^{\circ}$$
 7. $\tan \phi = \cot 45^{\circ}$

8.
$$\csc \phi = \sec 73^\circ$$

$$\phi = 78^{\circ}$$
 $\phi = 25^{\circ}$ $\phi = 45^{\circ}$ $\phi = 17^{\circ}$

For each triangle, fill in all the missing information possible. If you cannot, label it as "can't find". Triangles are not necessarily drawn to scale.

